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Supplementary Methods
Derivation of dimensionless model equations

We begin by writing our model equations in a conventional format (1):
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Where {a..e} represent mMRNA concentrations, {A..E} represent protein concentrations,
{amx, apx} represent degradation rates, and {fmx Spx} represent synthesis rates. The
functions h(R) and g(A,R) are used to capture the effects of gene regulation; both are
bounded to the interval [0,1], with h(R) monotonically decreasing (repression), and
g(A,R) increasing in A but decreasing in R (activation and repression on the same
promoter). Binding follows the Hill equation; activators and repressors bind

competitively to the same promoter:
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Here, k; is the binding constant for binding reaction i. To limit the number of free
parameters, the Hill coefficient n was assumed to be equal for all reactions.
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To non-dimensionalize these equations, we will need to make the following

substitutions:
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so that dimensional quantities, such as the concentration a, are replaced by a constant
scale a. with units of concentration and a unitless parameter a. Now our dynamical

equations are:
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Now define the characteristic mMRNA concentrations and dimensionless decay constants

as.
a, =t.[,,, etc.
ﬂma =tcama’ etC.

The model equations now become:
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Now we can define characteristic protein concentrations:
A =t Bl (50)
Also, our activation functions (Eq. S2) can be replaced by
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X = Y etc. are dimensionless activation/repression parameters.
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Finally, our dimensionless model equations are:
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The tildes are now superfluous, as all quantities are dimensionless. We have reduced the
number of explicit parameters from 31 to 21. The remaining 10 parameters account for
(arbitrary) rescaling of model variables to produce output with units of concentration.



Estimating mRNA-protein phase lags

Due to the lack of accurate quantitative data on protein oscillation phases,
mRNA-protein phase lags were estimated based on estimates of the protein amplitude.
It should be noted that this is a model of the SCN clock and protein measurements have
generally been restricted to peripheral tissues such as the liver, so even estimates of
protein oscillation amplitude should be made cautiously. Beginning with the equation
for mRNA concentration,
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We can take the Laplace transform:
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We can now take the inverse Laplace transform:
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If the steady-state solution m_ (t) is substituted into Equation S9, the result is equal to
the derivative of m,_ (t), indicating that this solution is valid for all parameter values.
The protein case described below is somewhat more complicated.

The solution for the protein term begins with the differential equation:
p=pBm-a,p, (S14)
which we will again solve using a Laplace transform.
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Rather than inserting the complete solution for M(s), we will omit the initial transient:

(S15)

m, (t)——M_(s)
Mw(s):ﬁcos¢[scos¢;+w028in ¢J+ ;Bm (516)
2am S+ @, Zams

This will give us the correct long-term behavior for p:
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Taking the inverse Laplace transform,
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Note that, while the sine and cosine functions have a periodicity of 2z, the period of the
tangent function is only = — this means that a phase obtained using the arctangent (as in
Equation S18) may need to be shifted by n. To check for this possibility, we can
compare the derivative of Equation S19 with a derivative calculated using Equation
S14; in general they will only match for the correct value of ¢. Checking at a single time
point is sufficient; the calculation is simple for t = 0:
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When ¢ and y are calculated for realistic values of o, and o (as in Figure S2), itis
often the case that this equality holds for w+= but not for y; y must then be adjusted

accordingly.
We can now obtain the relative protein oscillation amplitude:
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as well as the phase lag
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As described in Equations 4 and 5 of the main text.
Curve fitting for experimental PRCs

In Figure 5, the experimental PRCs for NPY and NMDA were fit to the following
function:
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Here, r and 4 are the magnitude and direction of perturbation in Glass and Winfree’s
circular limit cycle model of phase resetting (2), and g(¢) is a periodic gating function
that controls the circadian times at which the system is sensitive to external perturbation.
The parameter £ controls the “squareness” of the gating function and ¢, is the phase at
the center of the sensitive region (for £ > 0). The sensitive and insensitive phases have
equal length if y = 0, while the sensitive phase is longer for y > 0. For a set of
experimentally-observed (¢, Ag) pairs, optimal values of r, 8, B, ¢ ¢, and y were found by
nonlinear Levenberg-Marquardt fitting.

Exploration of parameter space

The maximum-entropy ensembles described in the “Generation of model ensembles”
section of the main text were generated using the following algorithm:

p = initial parameter set (vector with 21 elements)

s = Monte Carlo move size

KT = temperature scale

S() = score function defined in Equations 6-8 of the main text

score = S(p)
for i = 0...200000:
new_p=p

choose a random integer j in [0:21]
choose a random number v, uniformly distributed on (In(1/s):In(s))
new_p[j] = new_p[j] * exp(v)
new_score = S(new_p)

choose a random number u, uniformly distributed on (0,1)
if (new_score < score) or (exp((score-new_score)/KT) > u):

score = new_score

p=new_p
save p for later use



For each sampling temperature KT used, the move scale s was chosen to give an
acceptance rate of ~50%; higher sampling temperatures will require a larger move scale
to reach this level. The role of kT is essentially to control the algorithm’s willingness to
go uphill —if KT is very small, then exp((score-new_score)/kT) will tend to be close to
zero when new_score > score and uphill moves will rarely be accepted. If KT is large,
then exp((score-new_score)/kT) will often be close to 1 and the algorithm will
cheerfully climb hills.



Table S1: Experimentally-derived parameter distributions used for the initial parameter
search, as well as the construction of Figure S2 from Equations S21 and S22. In the
initial search, the non-dimensional model parameters were derived from these using
Equations S4 and S7, with a characteristic time scale t; = 1. All parameters except the
initial distribution of n follow a lognormal distribution with a PDF of
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Symbol Description PDF
om mRNA degradation rate (h™) u=-1.949, 6=0.724
Bm MRNA transcription rate (nM/h) 1=-6.608, 6=0.992
n Hill coefficient e®Dforx>1
ap protein degradation (h™) 1=-4.199, 6=1.024
Bp protein translation (h™) 1=3.519, 0=1.325
ky TF-promoter binding constant (nM) 1=2.0, 6=2.0




Table S2: Model parameters used in Equation 1 of the main text. The PDFs listed here
were calculated from the parameters of the successful oscillators in the initial parameter
search. The major difference from the experimentally-derived parameters in Table S1 is
that protein and mRNA decay rates are faster, as would be expected for oscillating
transcription factors and their transcripts; see Figure S1. The optimized values listed are
for the parameter search with probability and knockout constraints (“P” in Figure 4).

Parameter Description PDF Optimized value
ma MRNA a degradation 1=-1.113, 6=0.805 0.313

Mmb MRNA b degradation 1=-1.113, 6=0.805 1.542

Nme MRNA c degradation 1=-1.113, 6=0.805 0.551

Nmd MRNA d degradation 1=-1.113, 6=0.805 1.157

Nme MRNA e degradation 1=-1.113, 6=0.805 0.267

HpA protein A degradation 1=-1.006, 6=1.045 0.434

NpB protein B degradation 1=-1.006, 6=1.045 0.113

e protein C degradation | 4=-1.006, 0=1.045 0.328

1pD protein D degradation | ©=-1.006, 6=1.045 0.686

1pE protein E degradation 1=-1.006, 6=1.045 0.254

n Hill coefficient 1=0.693, 0=0.187 3.426

21 repression of a by C 1=-5.095, 6=2.610 0.486

X2 activation of b by A 1=-5.095, 6=2.610 0.731

23 repression of b by E §=-5.095, 0=2.610 | 6.79x10°®
x4 activation of c by A 1=-5.095, 6=2.610 0.300

x5 activation of c by B 1=-5.095, 6=2.610 0.218

X6 repression of c by D 1=-5.095, 6=2.610 1.384

X7 repression of ¢ by E §=-5.095, 0=2.610 | 6.78x10°®
X8 repression of d by C 1=-5.095, 6=2.610 0.417

X9 activation of e by B 1=-5.095, 6=2.610 6.77x10°
210 repression of e by D 1=-5.095, 6=2.610 6.70x10°®
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Figure S1: Histograms of parameter values in the ensembles obtained using four
different scoring approaches. Naming of the ensembles is as in Figure 3 of the main
text. The shaded “search dist” region shows the experimentally-derived parameter
distributions used in the original random search (Table S1). Because these distributions
were obtained for a broad-based selection of genes and are not specific to oscillating
transcription factors, the degradation rates observed in the oscillating sub-population are
typically faster than the original distribution. To account for this difference, new
probability distributions (“score dist”) were inferred from this oscillating sub-population
and used for subsequent parameter scoring (Table S2).
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Figure S2: Relationship between relative protein oscillation amplitude and
protein-mRNA phase lag. Physically-reasonable values for mMRNA and protein
degradation rates were drawn from the distributions described in Table S2 and
substituted into Equations 4 and 5 of the main text to obtain values for the relative
protein amplitude and the mRNA-protein phase lag. The nearly-linear relationship
between these quantities allows us to infer protein phases based on qPCR measurements
of MRNA phase and estimates of protein oscillation amplitude, which are somewhat
more reliable than phase estimates.



Figure S3: Protein and mRNA phases used in model optimization. Phases of mRNA
components were derived from qPCR experiments (see Figure 2 in the main text), and
protein phases were inferred using the linear relationship in Figure S2.
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Figure S4: Model outputs for oscillating protein levels, similar to Figure 2 in the main
text. Rather than being directly experimentally-measured, the data points are estimated
based on reported protein oscillation amplitudes and phases inferred using Figure S2.



Ensemble without probability constraint
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Figure S5: Knockout statistics for the Monte Carlo ensembles in which the knockout
constraint was removed. Especially when the probability constraint is used, it appears
that the constraints on the regulation of Cry1 are usually satisfied even if the constraint
is not present. The opposite is true for a knockout of the RevErb genes; if the constraint
is omitted, the correct phenotype is almost never observed. The RevErb KO constraint
exerted a significant effect on the parameter search and sampling, constraining it to a
region of parameter space in which this knockout had an unstable fixed point.
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Figure S6: Phase response curves for protein component of the model, similar to

Figure 5 in the main text.
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