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Supplementary Methods 

 

Derivation of dimensionless model equations 

 

We begin by writing our model equations in a conventional format (1): 
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Where {a..e} represent mRNA concentrations, {A..E} represent protein concentrations, 

{αmx, αpX} represent degradation rates, and {βmx, βpX} represent synthesis rates. The 

functions h(R) and g(A,R) are used to capture the effects of gene regulation; both are 

bounded to the interval [0,1], with h(R) monotonically decreasing (repression), and 

g(A,R) increasing in A but decreasing in R (activation and repression on the same 

promoter). Binding follows the Hill equation; activators and repressors bind 

competitively to the same promoter: 
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Here, ki is the binding constant for binding reaction i. To limit the number of free 

parameters, the Hill coefficient n was assumed to be equal for all reactions.  

 



To non-dimensionalize these equations, we will need to make the following 

substitutions: 
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so that dimensional quantities, such as the concentration a, are replaced by a constant 

scale ac with units of concentration and a unitless parameter a~ . Now our dynamical 

equations are: 
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Now define the characteristic mRNA concentrations and dimensionless decay constants 

as:  

macc ta  , etc.                                                      (S4) 

macma t   , etc. 

 

The model equations now become: 
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Now we can define characteristic protein concentrations: 

pAmacc tA 
2
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Also, our activation functions (Eq. S2) can be replaced by 
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Where 

1

2

1
k

t pCmcc 
  , etc. are dimensionless activation/repression parameters. 

Finally, our dimensionless model equations are: 
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The tildes are now superfluous, as all quantities are dimensionless. We have reduced the 

number of explicit parameters from 31 to 21. The remaining 10 parameters account for 

(arbitrary) rescaling of model variables to produce output with units of concentration. 



 

Estimating mRNA-protein phase lags 

 

Due to the lack of accurate quantitative data on protein oscillation phases, 

mRNA-protein phase lags were estimated based on estimates of the protein amplitude. 

It should be noted that this is a model of the SCN clock and protein measurements have 

generally been restricted to peripheral tissues such as the liver, so even estimates of 

protein oscillation amplitude should be made cautiously. Beginning with the equation 

for mRNA concentration, 
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We can take the Laplace transform: 
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If we define 
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then 
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We can now take the inverse Laplace transform: 
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If the steady-state solution  tm  is substituted into Equation S9, the result is equal to 

the derivative of  tm , indicating that this solution is valid for all parameter values. 

The protein case described below is somewhat more complicated. 

  

The solution for the protein term begins with the differential equation: 

pmp pp   ,                                                    (S14) 

which we will again solve using a Laplace transform. 
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Rather than inserting the complete solution for M(s), we will omit the initial transient: 
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This will give us the correct long-term behavior for p: 
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where 
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Taking the inverse Laplace transform, 



   

      

   
mp

mp

pm

mp

t

t

mp

mpt

pm

mp

ttp

eettp

tpsP

pp

























 

2
cos

cos

2
lim

1
2

coscos
cos

2

0
2

0

2

0
2

0

2

1


















L

          (S19) 

Note that, while the sine and cosine functions have a periodicity of 2π, the period of the 

tangent function is only π – this means that a phase obtained using the arctangent (as in 

Equation S18) may need to be shifted by π. To check for this possibility, we can 

compare the derivative of Equation S19 with a derivative calculated using Equation 

S14; in general they will only match for the correct value of φ. Checking at a single time 

point is sufficient; the calculation is simple for t = 0: 
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When φ and ψ are calculated for realistic values of αp and αm (as in Figure S2), it is 

often the case that this equality holds for ψ+π but not for ψ; ψ must then be adjusted 

accordingly. 

We can now obtain the relative protein oscillation amplitude: 
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as well as the phase lag 
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As described in Equations 4 and 5 of the main text. 

 

Curve fitting for experimental PRCs  

 

In Figure 5, the experimental PRCs for NPY and NMDA were fit to the following 

function: 
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Here, r and θ are the magnitude and direction of perturbation in Glass and Winfree’s 

circular limit cycle model of phase resetting (2), and g(φ) is a periodic gating function 

that controls the circadian times at which the system is sensitive to external perturbation. 

The parameter β controls the “squareness” of the gating function and φc is the phase at 

the center of the sensitive region (for β > 0). The sensitive and insensitive phases have 

equal length if γ = 0, while the sensitive phase is longer for γ > 0. For a set of 

experimentally-observed (φ, Δφ) pairs, optimal values of r, θ, β, φ c, and γ were found by 

nonlinear Levenberg-Marquardt fitting. 

Exploration of parameter space 

 

The maximum-entropy ensembles described in the “Generation of model ensembles” 

section of the main text were generated using the following algorithm: 

 

p = initial parameter set (vector with 21 elements) 

s = Monte Carlo move size 

kT = temperature scale 

S() = score function defined in Equations 6-8 of the main text 

 

score = S(p) 

for i = 0...200000: 

 new_p = p 

 choose a random integer j in [0:21] 

 choose a random number v, uniformly distributed on (ln(1/s):ln(s)) 

 new_p[j] = new_p[j] * exp(v) 

            new_score = S(new_p) 

 choose a random number u, uniformly distributed on (0,1) 

 if (new_score < score) or (exp((score-new_score)/kT) > u): 

  score = new_score 

  p = new_p 

 save p for later use 

 



For each sampling temperature kT used, the move scale s was chosen to give an 

acceptance rate of ~50%; higher sampling temperatures will require a larger move scale 

to reach this level. The role of kT is essentially to control the algorithm’s willingness to 

go uphill – if kT is very small, then exp((score-new_score)/kT) will tend to be close to 

zero when new_score > score and uphill moves will rarely be accepted. If kT is large, 

then exp((score-new_score)/kT) will often be close to 1 and the algorithm will 

cheerfully climb hills. 

  



Table S1: Experimentally-derived parameter distributions used for the initial parameter 

search, as well as the construction of Figure S2 from Equations S21 and S22. In the 

initial search, the non-dimensional model parameters were derived from these using 

Equations S4 and S7, with a characteristic time scale tc = 1. All parameters except the 

initial distribution of n follow a lognormal distribution with a PDF of 
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Symbol Description PDF 

αm mRNA degradation rate (h
-1

) μ=-1.949, σ=0.724 

βm mRNA transcription rate (nM/h) μ=-6.608, σ=0.992 

n Hill coefficient e
-(x-1)

 for x > 1 

αp protein degradation (h
-1

) μ=-4.199, σ=1.024 

βp protein translation (h
-1

) μ=3.519, σ=1.325 

k1 TF-promoter binding constant (nM) μ=2.0, σ=2.0 

 

  



Table S2: Model parameters used in Equation 1 of the main text. The PDFs listed here 

were calculated from the parameters of the successful oscillators in the initial parameter 

search. The major difference from the experimentally-derived parameters in Table S1 is 

that protein and mRNA decay rates are faster, as would be expected for oscillating 

transcription factors and their transcripts; see Figure S1. The optimized values listed are 

for the parameter search with probability and knockout constraints (“P” in Figure 4). 

 

Parameter Description PDF  Optimized value 

ηma mRNA a degradation μ=-1.113, σ=0.805 0.313 

ηmb mRNA b degradation μ=-1.113, σ=0.805 1.542 

ηmc mRNA c degradation μ=-1.113, σ=0.805 0.551 

ηmd mRNA d degradation μ=-1.113, σ=0.805 1.157 

ηme mRNA e degradation μ=-1.113, σ=0.805 0.267 

ηpA protein A degradation μ=-1.006, σ=1.045 0.434 

ηpB protein B degradation μ=-1.006, σ=1.045 0.113 

ηpC protein C degradation μ=-1.006, σ=1.045 0.328 

ηpD protein D degradation μ=-1.006, σ=1.045 0.686 

ηpE protein E degradation μ=-1.006, σ=1.045 0.254 

n Hill coefficient μ=0.693, σ=0.187 3.426 

χ1 repression of a by C μ=-5.095, σ=2.610 0.486 

χ2 activation of b by A μ=-5.095, σ=2.610 0.731 

χ3 repression of b by E μ=-5.095, σ=2.610 6.79×10
-6

 

χ4 activation of c by A μ=-5.095, σ=2.610 0.300 

χ5 activation of c by B μ=-5.095, σ=2.610 0.218 

χ6 repression of c by D μ=-5.095, σ=2.610 1.384 

χ7 repression of c by E μ=-5.095, σ=2.610 6.78×10
-6

 

χ8 repression of d by C μ=-5.095, σ=2.610 0.417 

χ9 activation of e by B μ=-5.095, σ=2.610 6.77×10
-6

 

χ10 repression of e by D μ=-5.095, σ=2.610 6.70×10
-6

 

 



 

 

Figure S1: Histograms of parameter values in the ensembles obtained using four 

different scoring approaches. Naming of the ensembles is as in Figure 3 of the main 

text. The shaded “search dist” region shows the experimentally-derived parameter 

distributions used in the original random search (Table S1). Because these distributions 

were obtained for a broad-based selection of genes and are not specific to oscillating 

transcription factors, the degradation rates observed in the oscillating sub-population are 

typically faster than the original distribution. To account for this difference, new 

probability distributions (“score dist”) were inferred from this oscillating sub-population 

and used for subsequent parameter scoring (Table S2). 

  



 

Figure S2: Relationship between relative protein oscillation amplitude and 

protein-mRNA phase lag. Physically-reasonable values for mRNA and protein 

degradation rates were drawn from the distributions described in Table S2 and 

substituted into Equations 4 and 5 of the main text to obtain values for the relative 

protein amplitude and the mRNA-protein phase lag. The nearly-linear relationship 

between these quantities allows us to infer protein phases based on qPCR measurements 

of mRNA phase and estimates of protein oscillation amplitude, which are somewhat 

more reliable than phase estimates. 



 
Figure S3: Protein and mRNA phases used in model optimization. Phases of mRNA 

components were derived from qPCR experiments (see Figure 2 in the main text), and 

protein phases were inferred using the linear relationship in Figure S2. 

 

  



 

Figure S4: Model outputs for oscillating protein levels, similar to Figure 2 in the main 

text. Rather than being directly experimentally-measured, the data points are estimated 

based on reported protein oscillation amplitudes and phases inferred using Figure S2.  

  



 

Figure S5: Knockout statistics for the Monte Carlo ensembles in which the knockout 

constraint was removed. Especially when the probability constraint is used, it appears 

that the constraints on the regulation of Cry1 are usually satisfied even if the constraint 

is not present. The opposite is true for a knockout of the RevErb genes; if the constraint 

is omitted, the correct phenotype is almost never observed. The RevErb KO constraint 

exerted a significant effect on the parameter search and sampling, constraining it to a 

region of parameter space in which this knockout had an unstable fixed point. 

  



 

Figure S6: Phase response curves for protein component of the model, similar to 

Figure 5 in the main text. 
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